ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Passive macromodeling : theory and applications

دانلود کتاب مدل‌سازی کلان منفعل: نظریه و کاربردها

Passive macromodeling : theory and applications

مشخصات کتاب

Passive macromodeling : theory and applications

ویرایش: 1 
نویسندگان: ,   
سری: Wiley series in microwave and optical engineering 
ISBN (شابک) : 9781118094914, 1119140935 
ناشر: John Wiley & Sons 
سال نشر: 2016 
تعداد صفحات: 903 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 31 مگابایت 

قیمت کتاب (تومان) : 32,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 8


در صورت تبدیل فایل کتاب Passive macromodeling : theory and applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مدل‌سازی کلان منفعل: نظریه و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مدل‌سازی کلان منفعل: نظریه و کاربردها



نمای کلی از آخرین تکنیک‌های مدل‌سازی کلان غیرفعال با تأکید بر رویکردهای جعبه سیاه ارائه می‌کند

این کتاب پیشرفت‌ها را پوشش می‌دهد. در مدل سازی کلان خطی، با تمرکز بر روش های موثر و اثبات شده. پس از شروع با تعریف ویژگی‌های اساسی که باید مدل‌های سیستم‌های فیزیکی را مشخص کنند، نویسندگان چندین الگوریتم ماکرومدل‌سازی غیرفعال برجسته برای سیستم‌های توده‌ای و توزیع‌شده را مورد بحث قرار می‌دهند و آنها را از نظر دقت، کارایی و استحکام مقایسه می‌کنند. این کتاب شامل فصل‌هایی با مواد پس‌زمینه استاندارد (مانند مدارها و سیستم‌های خطی ثابت با زمان، گسسته‌سازی اولیه معادلات میدان، سیستم‌های فضای حالت)، و همچنین ضمائم جمع‌آوری حقایق اساسی از جبر خطی، الگوهای بهینه‌سازی، و سیگنال‌ها و تبدیل‌ها است. این متن همچنین موضوعات فنی و پیشرفته‌تری را که برای متخصص در نظر گرفته شده است، پوشش می‌دهد، که ممکن است در اولین مطالعه نادیده گرفته شود. رویکردی که توسط نویسندگان ایجاد شده است

  • مفاهیم اصلی را به تفصیل بیان می کند و نتایج را به روشی دقیق ریاضی و با استفاده از زبانی آسان و قابل فهم بیان می کند
  • مفاهیم مدل سازی کلان را از طریق مثال های اختصاصی نشان می دهد
  • شامل مجموعه‌ای جامع از مسائل و تمرین‌های پایان فصل است

  • مدلسازی کلان غیرفعال: نظریه و کاربردها
    به عنوان مرجعی برای دوره‌های ارشد یا کارشناسی ارشد در برنامه های مهندسی برق، و به مهندسان در زمینه های مدل سازی عددی، شبیه سازی، طراحی و بهینه سازی سیستم های الکتریکی/الکترونیکی.

    استفانو گریوت تالوسیا، دکترا، است دانشیار تئوری مدار در Politecnico di Torino در تورین ایتالیا و رئیس IdemWorks. دکتر Grivet-Talocia نویسنده بیش از 150 مقاله فنی منتشر شده در مجلات بین المللی و مجموعه مقالات کنفرانس است. او چندین الگوریتم را در زمینه مدل‌سازی کلان غیرفعال ابداع کرد و آنها را از طریق IdemWorks در دسترس قرار داد. تروندهایم، نروژ بیش از ده سال پیش، دکتر گوستاوسن نسخه اصلی روش برازش برداری را با پروفسور سملین در دانشگاه تورنتو توسعه داد. روش برازش برداری یکی از رایج ترین رویکردها برای استخراج مدل است. دکتر گوستاوسن نیز عضو IEEE است

    توضیحاتی درمورد کتاب به خارجی

    Offers an overview of state of the art passive macromodeling techniques with an emphasis on black-box approaches

    This book offers coverage of developments in linear macromodeling, with a focus on effective, proven methods. After starting with a definition of the fundamental properties that must characterize models of physical systems, the authors discuss several prominent passive macromodeling algorithms for lumped and distributed systems and compare them under accuracy, efficiency, and robustness standpoints. The book includes chapters with standard background material (such as linear time-invariant circuits and systems, basic discretization of field equations, state-space systems), as well as appendices collecting basic facts from linear algebra, optimization templates, and signals and transforms. The text also covers more technical and advanced topics, intended for the specialist, which may be skipped at first reading.

    • Provides coverage of black-box passive macromodeling, an approach developed by the authors
    • Elaborates on main concepts and results in a mathematically precise way using easy-to-understand language
    • Illustrates macromodeling concepts through dedicated examples
    • Includes a comprehensive set of end-of-chapter problems and exercises

    Passive Macromodeling: Theory and Applications
    serves as a reference for senior or graduate level courses in electrical engineering programs, and to engineers in the fields of numerical modeling, simulation, design, and optimization of electrical/electronic systems.

    Stefano Grivet-Talocia, PhD, is an Associate Professor of Circuit Theory at the Politecnico di Torino in Turin, Italy, and President of IdemWorks. Dr. Grivet-Talocia is author of over 150 technical papers published in international journals and conference proceedings. He invented several algorithms in the area of passive macromodeling, making them available through IdemWorks.

    Bjørn Gustavsen, PhD, is a Chief Research Scientist in Energy Systems at SINTEF Energy Research in Trondheim, Norway. More than ten years ago, Dr. Gustavsen developed the original version of the vector fitting method with Prof. Semlyen at the University of Toronto. The vector fitting method is one of the most widespread approaches for model extraction. Dr. Gustavsen is also an IEEE fellow


    فهرست مطالب

    Content: Preface xix    1 Introduction 1    1.1 Why Macromodeling? 1    1.2 Scope 4    1.3 Macromodeling Flows 6    1.3.1 Macromodeling via Model Order Reduction 6    1.3.2 Macromodeling from Field Solver Data 7    1.3.3 Macromodeling from Measured Responses 8    1.4 Rational Macromodeling 9    1.5 Physical Consistency Requirements 11    1.6 Time-Domain Implementation 15    1.7 An Example 16    1.8 What Can Go Wrong? 17    2 Linear Time-Invariant Circuits and Systems 23    2.1 Basic Definitions 24    2.1.1 Linearity 24    2.1.2 Memory and Causality 26    2.1.3 Time Invariance 26    2.1.4 Stability 27    2.1.5 Passivity 28    2.2 Linear Time-Invariant Systems 28    2.2.1 Impulse Response 29    2.2.2 Properties of LTI Systems 32    2.3 Frequency-Domain Characterizations 33    2.4 Laplace and Fourier Transforms 34    2.4.1 Bilateral Laplace Transform and Transfer Matrices 34    2.4.2 Causal LTI Systems and the Unilateral Laplace Transform 36    2.4.3 Fourier Transform 36    2.5 Signal and System Norms    37    2.5.1 Signal Norms 38    2.5.2 System Norms 41    2.6 Multiport Representations 44    2.6.1 Ports and Terminals 44    2.6.2 Immittance Representations 45    2.6.3 Scattering Representations 46    2.6.4 Reciprocity 48    2.7 Passivity 49    2.7.1 Power and Energy 50    2.7.2 Passivity and Causality 51    2.7.3 The Static Case 52    2.7.4 The Dynamic Case 53    2.7.5 Positive Realness, Bounded Realness, and Passivity 54    2.7.6 Some Examples 56    2.8 Stability and Causality 59    2.8.1 Laplace-Domain Conditions for Causality 61    2.8.2 Laplace-Domain Conditions for BIBO Stability 62    2.8.3 Causality and Stability 62    2.9 Boundary Values and Dispersion Relations    64    2.9.1 Assumptions 64    2.9.2 Reconstruction of H(s) for s     C+ 65    2.9.3 Reconstruction of H(s) for s     jR 65    2.9.4 Causality and Dispersion Relations 67    2.9.5 Generalizations 68    2.10 Passivity Conditions on the Imaginary Axis    70    Problems 71    3 Lumped LTI Systems 73    3.1 An Example from Circuit Theory 74    3.1.1 Variation on a Theme 76    3.1.2 Driving-Point Impedance 77    3.2 State-Space and Descriptor Forms 77    3.2.1 Singular Descriptor Forms 77    3.2.2 Internal Representations of Lumped LTI Systems 79    3.3 The Zero-Input Response 80    3.4 Internal Stability 81    3.4.1 Lyapunov Stability 81    3.4.2 Internal Stability of LTI Systems 83    3.5 The Lyapunov Equation 84    3.6 The Zero-State Response 87    3.6.1 Impulse Response 88    3.7 Operations on State-Space Systems 89    3.7.1 Interconnections 90    3.7.2 Inversion 91    3.7.3 Similarity Transformations 91    3.8 Gramians 91    3.8.1 Observability 92    3.8.2 Controllability 93    3.8.3 Minimal Realizations 95    3.9 Reciprocal State-Space Systems 95    3.10 Norms 97    3.10.1 L2 Norm 98    3.10.2 H    Norm 99    Problems 100    4 Distributed LTI Systems 103    4.1 One-Dimensional Distributed Circuits 104    4.1.1 The Discrete-Space Case 104    4.1.2 The Continuous-Space Case 106    4.1.3 Discussion 109    4.2 Two-Dimensional Distributed Circuits    111    4.2.1 The Discrete-Space Case 112    4.2.2 The Continuous-Space Case 114    4.2.3 A Closed-Form Solution 116    4.2.4 Spatial Discretization 118    4.2.5 Discussion 120    4.3 General Electromagnetic Characterization 123    4.3.1 3D Electromagnetic Modeling 126    4.3.2 Summary and Outlook 130    Problems 131    5 Macromodeling Via Model Order Reduction 135    5.1 Model Order Reduction 135    5.2 Moment Matching 136    5.2.1 Moments 136    5.2.2 Pade Approximation and AWE 138    5.2.3 Complex Frequency Hopping 139    5.3 Reduction by Projection 140    5.3.1 Krylov Subspaces 141    5.3.2 Implicit Moment Matching: The Orthogonal Case 142    5.3.3 The Arnoldi Process 143    5.3.4 PRIMA 145    5.3.5 Multipoint Moment Matching 147    5.3.6 An Example 148    5.3.7 Implicit Moment Matching: The Biorthogonal Case 151    5.3.8 Pade Via Lanczos (PVL) 154    5.4 Reduction by Truncation 155    5.4.1 Balancing 156    5.4.2 Balanced Truncation 158    5.5 Advanced Model Order Reduction    159    5.5.1 Passivity-Preserving Balanced Truncation 159    5.5.2 Balanced Truncation of Descriptor Systems 160    5.5.3 Reducing Large-Scale Systems 161    Problems 166    6 Black-Box Macromodeling and Curve Fitting 169    6.1 Basic Curve Fitting 171    6.1.1 Linear Least Squares 172    6.1.2 Maximum Likelihood Estimation 174    6.1.3 Polynomial Fitting 176    6.2 Direct Rational Fitting 182    6.2.1 Polynomial Ratio Form 183    6.2.2 Pole   Zero Form 183    6.2.3 Partial Fraction Form 184    6.2.4 Partial Fraction Form with Fixed Poles 184    6.2.5 Nonlinear Least Squares 185    6.3 Linearization via Weighting 187    6.4 Asymptotic Pole   Zero Placement 191    6.5 ARMA Modeling 193    6.5.1 Modeling from Time-Domain Responses 195    6.5.2 Modeling from Frequency Domain Responses 197    6.5.3 Conversion of ARMA Models 201    6.6 Prony   s Method 203    6.7 Subspace-Based Identification    204    6.7.1 Discrete-Time State-Space Systems 204    6.7.2 Macromodeling from Impulse Response Samples 205    6.7.3 Macromodeling from Input   Output Samples 207    6.7.4 From Discrete-Time to Continuous-Time State-Space Models 210    6.7.5 Frequency-Domain Subspace Identification 211    6.7.6 Generalized Pencil-of-Function Methods 212    6.7.7 Examples 214    6.8 Loewner Matrix Interpolation    215    6.8.1 The Scalar Case 216    6.8.2 The Multiport Case 218    Problems 222    7 The Vector Fitting Algorithm 225    7.1 The Sanathanan   Koerner Iteration 226    7.1.1 The Steiglitz   McBride Iteration 229    7.2 The Generalized Sanathanan   Koerner Iteration 231    7.2.1 General Basis Functions 231    7.2.2 The Partial Fraction Basis 233    7.3 Frequency-Domain Vector Fitting 234    7.3.1 A Simple Model Transformation 234    7.3.2 Computing the New Poles 236    7.3.3 The Vector Fitting Iteration 237    7.3.4 From GSK to VF 239    7.4 Consistency And Convergence 241    7.4.1 Consistency 241    7.4.2 Convergence 242    7.4.3 Formal Convergence Analysis 245    7.5 Practical VF Implementation 247    7.5.1 Causality, Stability, and Realness 247    7.5.2 Order Selection and Initialization 253    7.5.3 Improving Numerical Robustness 254    7.6 Relaxed Vector Fitting 256    7.6.1 Weight Normalization, Noise, and Convergence 256    7.6.2 Relaxed Vector Fitting 259    7.7 Tuning VF 264    7.7.1 Weighting and Error Control 264    7.7.2 High-Frequency Behavior 266    7.7.3 High-Frequency Constraints 268    7.7.4 DC Point Enforcement 269    7.7.5 Simultaneous Constraints 271    7.8 Time-Domain Vector Fitting 273    7.9 z-Domain Vector Fitting 278    7.10 Orthonormal Vector Fitting 281    7.10.1 Orthonormal Rational Basis Functions 281    7.10.2 The OVF Iteration 284    7.10.3 The OVF Pole Relocation Step 285    7.10.4 Finding Residues 286    7.11 Other Variants 288    7.11.1 Magnitude Vector Fitting 288    7.11.2 Vector Fitting with L1 Norm Minimization 291    7.11.3 Dealing with Higher Pole Multiplicities 293    7.11.4 Including Higher Order Derivatives 294    7.11.5 Hard Relocation of Poles 295    7.12 Notes on Overfitting and Ill-Conditioning 296    7.12.1 Exact Model Identification 296    7.12.2 Curve Fitting 297    7.13 Application Examples 299    7.13.1 Surface Acoustic Wave Filter 299    7.13.2 Subnetwork Equivalent 301    7.13.3 Transformer Modeling from Time-Domain Measurements 303    Problems 303    8 Advanced Vector Fitting for Multiport Problems 307    8.1 Introduction 307    8.2 Adapting VF to Multiple Responses 308    8.2.1 Pole Identification 308    8.2.2 Fast Vector Fitting 310    8.2.3 Residue Identification 311    8.3 Multiport Formulations 312    8.3.1 Single-Element Modeling: Multi-SISO Structure 314    8.3.2 Single-Column Modeling: Multi-SIMO Structure 316    8.3.3 Matrix Modeling: MIMO Structure 317    8.3.4 Matrix Modeling: Minimal Realizations 318    8.3.5 Sparsity Considerations 322    8.4 Enforcing Reciprocity 322    8.4.1 External Reciprocity 324    8.4.2 Internal Reciprocity    325    8.5 Compressed Macromodeling 329    8.5.1 Data Compression 329    8.5.2 Compressed Rational Approximation 330    8.5.3 An Application Example 331    8.6 Accuracy Considerations 333    8.6.1 Noninteracting Models 333    8.6.2 Interacting Models, Scalar Case 334    8.6.3 Error Magnification in Multiport Systems 338    8.7 Overcoming Error Magnification 340    8.7.1 Elementwise Inverse Weighting 340    8.7.2 Diagonalization 342    8.7.3 Mode-Revealing Transformations 347    8.7.4 Modal Vector Fitting 356    8.7.5 External and Internal Ports 358    Problems 363    9 Passivity Characterization of Lumped LTI Systems 365    9.1 Internal Characterization of Passivity 365    9.1.1 A First Order Example 365    9.1.2 The Dissipation Inequality 367    9.1.3 Lumped LTI Systems 368    9.2 Passivity of Lumped Immittance Systems 368    9.2.1 Rational Positive Real Matrices 369    9.2.2 Extracting Purely Imaginary Poles 372    9.2.3 The Positive Real Lemma 376    9.2.4 Positive Real Functions Revisited 378    9.2.5 Popov Functions and Spectral Factorizations 379    9.2.6 Hamiltonian Matrices 381    9.2.7 Passivity Characterization via Hamiltonian Matrices 385    9.2.8 Determination of Local Passivity Violations 387    9.2.9 Quantification of Passivity Violations via Bisection 390    9.2.10 Quantification of Passivity Violations via Sampling 393    9.2.11 Frequency Transformations 394    9.2.12 Extended Hamiltonian Pencils 396    9.2.13 Generalized Hamiltonian Pencils 398    9.2.14 Positive Real Lemma for Descriptor Systems 399    9.3 Passivity of Lumped Scattering Systems 402    9.3.1 Rational Bounded Real Matrices 402    9.3.2 The Bounded Real Lemma 406    9.3.3 Bounded Real Functions Revisited 408    9.3.4 Popov Functions, Spectral Factorizations, and Hamiltonian Matrices 409    9.3.5 Passivity Characterization via Hamiltonian Matrices 410    9.3.6 Determination of Local Passivity Violations 413    9.3.7 Quantification of Passivity Violations via Bisection 416    9.3.8 Quantification of Passivity Violations via Sampling 420    9.3.9 Extended Hamiltonian Pencils 421    9.3.10 Generalized Hamiltonian Pencils 422    9.3.11 Bounded Real Lemma for Descriptor Systems 423    9.4 Advanced Passivity Characterization 426    9.4.1 On the Computation of Imaginary Hamiltonian Eigenvalues 426    9.4.2 Large-Scale Hamiltonian Eigenvalue Problems    427    9.4.3 Half-Size Passivity Test Matrices 430    Problems 433    10 Passivity Enforcement of Lumped LTI Systems 437    10.1 Passivity Constraints for Lumped LTI Systems 437    10.1.1 Passive State-Space Immittance Systems 438    10.1.2 Passive State-Space Scattering Systems 439    10.2 State-Space Perturbation 440    10.2.1 Asymptotic Perturbation 441    10.2.2 Dynamic Perturbation 441    10.2.3 Input-State Perturbation 442    10.2.4 State-Output Perturbation 443    10.2.5 A Perturbation Strategy for Passivity Enforcement 444    10.3 Asymptotic Passivity Enforcement 445    10.3.1 Immittance Systems 445    10.3.2 Scattering Systems 446    10.4 Imaginary Poles of Immittance Systems 447    10.5 Local Passivity Enforcement 448    10.5.1 Local Passivity Constraints 449    10.5.2 Enforcing Local Passivity Constraints 454    10.6 Passivity Enforcement Via Hamiltonian Perturbation 460    10.6.1 Hamiltonian Perturbation of Immittance Systems 462    10.6.2 Hamiltonian Perturbation of Scattering Systems 464    10.6.3 Hamiltonian Perturbation Strategies 465    10.6.4 Slopes 468    10.6.5 Global Passivity Enforcement via Hamiltonian Perturbation 471    10.7 Linear Matrix Inequalities 474    10.7.1 Parameterizations 476    10.8 Computational Cost 477    10.9 Advanced Accuracy Control 478    10.9.1 Frequency-Selective Norms 478    10.9.2 Individual Response Weighting 480    10.9.3 Bandlimited Norms 481    10.9.4 Relative Norms 484    10.9.5 Data-Based Cost Functions 486    10.10 Least-Squares Residue Perturbation 487    10.10.1 Basic Residue Perturbation (RP) 487    10.10.2 Spectral Residue Perturbation (SRP) 492    10.10.3 Mode-Revealing Transformations 493    10.10.4 Modal Perturbation (MP) 494    10.10.5 Robust Iterations 495    10.11 Alternative Formulations 496    10.11.1 Passivity Constraints Based on H    norm    496    10.11.2 Iterative Update by Fitting Passivity Violations 503    10.11.3 Pole Perturbation Approaches 505    10.11.4 Parameterization via Positive Fractions 506    10.12 Descriptor Systems    508    10.12.1 Perturbation of Generalized Hamiltonian Pencils 508    10.12.2 Handling Singular Direct Coupling Terms 509    10.12.3 Proper Part Extraction 510    10.12.4 Handling Impulsive Terms 511    10.12.5 Accuracy Control 512    Problems 512    11 Time-Domain Simulation 517    11.1 Discretization of ODE Systems 518    11.2 Interconnection of Macromodels 520    11.3 Direct Convolution 522    11.3.1 Equivalent Circuit Implementations 524    11.3.2 Discussion 527    11.4 Interfacing State-Space Macromodels 528    11.4.1 Equivalent Circuit Interfaces 530    11.5 Interfacing Pole-Residue Macromodels 533    11.5.1 Scalar Single-Pole System 533    11.5.2 General Multiport High-Order Systems 535    11.5.3 Discussion 537    11.6 Equivalent Circuit Synthesis 537    11.6.1 Direct Admittance Synthesis 538    11.6.2 Direct State-Space Synthesis 541    11.6.3 Sparse Synthesis 543    11.6.4 Classical RLCT Synthesis    545    Problems 559    12 Transmission Lines and Distributed Systems 563    12.1 Introduction 563    12.2 Multiconductor Transmission Lines 564    12.2.1 Per-Unit-Length Matrices 564    12.2.2 Frequency-Domain Solution via Modal Decomposition 566    12.2.3 Frequency-Domain Solution in the Physical Domain 570    12.3 Direct Macromodeling Approaches 573    12.3.1 Folded Line Equivalent Models 573    12.4 Lumped Segmentation Approaches 577    12.4.1 Segmenting 577    12.4.2 Topology-Based Methods 578    12.5 Matrix Rational Approximations 582    12.5.1 Pade Matrix Rational Approximations 583    12.5.2 Series Expansion into Eigenfunctions 586    12.6 Traveling Wave Formulations 590    12.6.1 Voltage Waves 591    12.6.2 Current Waves 592    12.6.3 Thevenin and Norton Equivalents 593    12.6.4 Terminal Admittance from Traveling Wave Model 593    12.6.5 Modal Traveling Waves 594    12.7 Lossless Traveling Wave Modeling 595    12.7.1 Delay Extraction for Lossless MTL 597    12.8 Traveling Wave Modeling of Scalar Lossy Transmission Lines 599    12.9 Representations Based on Multiple Reflections 601    12.9.1 The Delayed Vector Fitting Scheme 604    12.10 Basic Delay Extraction for Lossy MTL 606    12.11 Frequency-Dependent Traveling Wave Modeling 607    12.11.1 Modal Domain 608    12.11.2 Physical Domain 613    12.11.3 Delay Extraction and Optimization    625    12.12 General Delayed-Rational Macromodeling 626    12.12.1 Delay Estimation 629    12.12.2 Passivity Enforcement 631    12.12.3 Equivalent Circuit Synthesis 637    12.13 Passivity of Traveling Wave Models    638    12.14 Time-Domain Implementation for Traveling Wave Models 641    12.14.1 The Scalar Lossless Line 641    12.14.2 The Scalar Lossy Line 643    12.14.3 Lossy Multiconductor Transmission Lines 648    12.14.4 Examples 652    12.15 Discussion 657    Problems 658    13 Applications 663    13.1 Modeling for Signal and Power Integrity 663    13.1.1 Prelayout Analysis of Backplane Interconnects 664    13.1.2 Full Package Analysis 667    13.1.3 Full Board Analysis and Simulation 672    13.1.4 High-Speed Channel Modeling and Simulation 681    13.1.5 Model Extraction from Measurements 687    13.2 Computational Electromagnetics 691    13.2.1 Dynamic Subcell Models in Time-Domain Solvers 691    13.2.2 Automatic Stopping Criteria for Time-Domain Solvers 695    13.2.3 VF-Based Adaptive Frequency Sampling 698    13.3 Small-Signal Macromodels for RF and AMS Applications 701    13.4 Modeling for High-Voltage Power Systems 704    13.4.1 Subnetwork Equivalencing 705    13.4.2 Power Transformer Modeling from Frequency Sweep Measurements 708    13.4.3 Power Transformer Modeling from Manufacturer   s White-Box Model 715    13.5 Fluid Transmission Lines 720    13.6 Mechanical Systems 726    13.7 Ship Motion in Irregular Seas 728    13.8 Summary 733    14 Summary and Outlook 735    14.1 Parameterized Macromodels 735    14.1.1 Parameterized Macromodels with Fixed Poles 736    14.1.2 Fully Parameterized Macromodels 738    14.1.3 Higher Dimensional Parameter Spaces 742    14.2 Open Issues 743    14.2.1 Optimal Passivity Enforcement 743    14.2.2 Systems with Many Ports 744    14.2.3 White-Box Model Identification and Tuning 744    14.2.4 Transmission Line Models 745    14.2.5 Delay Systems 746    14.2.6 Extension to NL Systems 749    14.2.7 Integration with other solvers 749    Appendix A Notation 751    Appendix B Acronyms 757    Appendix C Linear Algebra 761    Appendix D Optimization Templates 781    Appendix E Signals and Transforms 805    Bibliography 839    Index 863




    نظرات کاربران